This is an R Markdown Notebook. When you execute code within the notebook, the results appear beneath the code.

Try executing this chunk by clicking the Run button within the chunk or by placing your cursor inside it and pressing Cmd+Shift+Enter.

dataPath <- "data/"
train <- read.csv(paste0(dataPath,"train_sample.csv"))
test <- read.csv(paste0(dataPath,"test_sample.csv"))

m=8 # = ncol(train)
predictors = paste0("X",1:(m-1))
library(xgboost)
library(randomForest)
param<-list("objective" = "binary:logistic")

matrHitters = data.matrix(train)[,predictors]
target = train$class

set.seed(1)
cvSalary = xgb.cv(params=param, data = matrHitters, label = target,
                nfold=5, nrounds = 50,prediction=T,verbose=F)
set.seed(1)
(cvSalary.table<-cvSalary$evaluation_log)
(bestNR = which.min(cvSalary.table$test_error_mean))
[1] 6
set.seed(1)
modelSalary<-xgboost(data=matrHitters, label = target, params=param,
                     nrounds=bestNR,verbose=F,save_period=NULL)
predicts <- predict(modelSalary, newdata=data.matrix(test)[,predictors])
pred <- cbind(test$id, as.integer(predicts > 0.5))
set.seed(1)
rfclass <- randomForest(x=train, y=as.factor(train$class), importance=T)
importance(rfclass)
               0          1 MeanDecreaseAccuracy MeanDecreaseGini
X1     2.8238562  2.5283712             3.618061         4.943689
X2    13.9384582 14.5884319            18.415655        75.076616
X3     3.9887162  1.6126005             4.132744         4.445975
X4     1.5982712  0.4250877             1.446682         4.455088
X5     1.0261508 -2.4955707            -1.149475         2.864263
X6    -0.2342377  4.9677834             3.705306         5.799035
X7     0.7290124  4.0690887             3.445250         4.058694
class 61.8332416 62.0669279            72.036835       134.213192
importance(rfclass)[which.max(importance(rfclass)[,"MeanDecreaseAccuracy"])]
[1] 61.83324
most = 2
saveRDS(list(RFMostImportant = most, Forecast = pred), "W4answer.rds")

Add a new chunk by clicking the Insert Chunk button on the toolbar or by pressing Cmd+Option+I.

When you save the notebook, an HTML file containing the code and output will be saved alongside it (click the Preview button or press Cmd+Shift+K to preview the HTML file).

The preview shows you a rendered HTML copy of the contents of the editor. Consequently, unlike Knit, Preview does not run any R code chunks. Instead, the output of the chunk when it was last run in the editor is displayed.

LS0tDQp0aXRsZTogIlIgTm90ZWJvb2siDQpvdXRwdXQ6IGh0bWxfbm90ZWJvb2sNCi0tLQ0KDQpUaGlzIGlzIGFuIFtSIE1hcmtkb3duXShodHRwOi8vcm1hcmtkb3duLnJzdHVkaW8uY29tKSBOb3RlYm9vay4gV2hlbiB5b3UgZXhlY3V0ZSBjb2RlIHdpdGhpbiB0aGUgbm90ZWJvb2ssIHRoZSByZXN1bHRzIGFwcGVhciBiZW5lYXRoIHRoZSBjb2RlLiANCg0KVHJ5IGV4ZWN1dGluZyB0aGlzIGNodW5rIGJ5IGNsaWNraW5nIHRoZSAqUnVuKiBidXR0b24gd2l0aGluIHRoZSBjaHVuayBvciBieSBwbGFjaW5nIHlvdXIgY3Vyc29yIGluc2lkZSBpdCBhbmQgcHJlc3NpbmcgKkNtZCtTaGlmdCtFbnRlciouIA0KDQpgYGB7cn0NCmRhdGFQYXRoIDwtICJkYXRhLyINCnRyYWluIDwtIHJlYWQuY3N2KHBhc3RlMChkYXRhUGF0aCwidHJhaW5fc2FtcGxlLmNzdiIpKQ0KdGVzdCA8LSByZWFkLmNzdihwYXN0ZTAoZGF0YVBhdGgsInRlc3Rfc2FtcGxlLmNzdiIpKQ0KDQptPTggIyA9IG5jb2wodHJhaW4pDQpwcmVkaWN0b3JzID0gcGFzdGUwKCJYIiwxOihtLTEpKQ0KYGBgDQpgYGB7cn0NCmxpYnJhcnkoeGdib29zdCkNCmxpYnJhcnkocmFuZG9tRm9yZXN0KQ0KYGBgDQpgYGB7cn0NCnBhcmFtPC1saXN0KCJvYmplY3RpdmUiID0gImJpbmFyeTpsb2dpc3RpYyIpDQoNCm1hdHJIaXR0ZXJzID0gZGF0YS5tYXRyaXgodHJhaW4pWyxwcmVkaWN0b3JzXQ0KdGFyZ2V0ID0gdHJhaW4kY2xhc3MNCg0Kc2V0LnNlZWQoMSkNCmN2U2FsYXJ5ID0geGdiLmN2KHBhcmFtcz1wYXJhbSwgZGF0YSA9IG1hdHJIaXR0ZXJzLCBsYWJlbCA9IHRhcmdldCwNCiAgICAgICAgICAgICAgICBuZm9sZD01LCBucm91bmRzID0gNTAscHJlZGljdGlvbj1ULHZlcmJvc2U9RikNCmBgYA0KYGBge3J9DQpzZXQuc2VlZCgxKQ0KKGN2U2FsYXJ5LnRhYmxlPC1jdlNhbGFyeSRldmFsdWF0aW9uX2xvZykNCihiZXN0TlIgPSB3aGljaC5taW4oY3ZTYWxhcnkudGFibGUkdGVzdF9lcnJvcl9tZWFuKSkNCmBgYA0KYGBge3J9DQpzZXQuc2VlZCgxKQ0KbW9kZWxTYWxhcnk8LXhnYm9vc3QoZGF0YT1tYXRySGl0dGVycywgbGFiZWwgPSB0YXJnZXQsIHBhcmFtcz1wYXJhbSwNCiAgICAgICAgICAgICAgICAgICAgIG5yb3VuZHM9YmVzdE5SLHZlcmJvc2U9RixzYXZlX3BlcmlvZD1OVUxMKQ0KYGBgDQoNCmBgYHtyfQ0KcHJlZGljdHMgPC0gcHJlZGljdChtb2RlbFNhbGFyeSwgbmV3ZGF0YT1kYXRhLm1hdHJpeCh0ZXN0KVsscHJlZGljdG9yc10pDQpwcmVkIDwtIGNiaW5kKHRlc3QkaWQsIGFzLmludGVnZXIocHJlZGljdHMgPiAwLjUpKQ0KYGBgDQoNCmBgYHtyfQ0Kc2V0LnNlZWQoMSkNCnJmY2xhc3MgPC0gcmFuZG9tRm9yZXN0KHg9dHJhaW4sIHk9YXMuZmFjdG9yKHRyYWluJGNsYXNzKSwgaW1wb3J0YW5jZT1UKQ0KYGBgDQoNCmBgYHtyfQ0KaW1wb3J0YW5jZShyZmNsYXNzKQ0KDQppbXBvcnRhbmNlKHJmY2xhc3MpW3doaWNoLm1heChpbXBvcnRhbmNlKHJmY2xhc3MpWywiTWVhbkRlY3JlYXNlQWNjdXJhY3kiXSldDQoNCm1vc3QgPSAyDQpgYGANCg0KDQoNCmBgYHtyfQ0Kc2F2ZVJEUyhsaXN0KFJGTW9zdEltcG9ydGFudCA9IG1vc3QsIEZvcmVjYXN0ID0gcHJlZCksICJXNGFuc3dlci5yZHMiKQ0KYGBgDQoNCkFkZCBhIG5ldyBjaHVuayBieSBjbGlja2luZyB0aGUgKkluc2VydCBDaHVuayogYnV0dG9uIG9uIHRoZSB0b29sYmFyIG9yIGJ5IHByZXNzaW5nICpDbWQrT3B0aW9uK0kqLg0KDQpXaGVuIHlvdSBzYXZlIHRoZSBub3RlYm9vaywgYW4gSFRNTCBmaWxlIGNvbnRhaW5pbmcgdGhlIGNvZGUgYW5kIG91dHB1dCB3aWxsIGJlIHNhdmVkIGFsb25nc2lkZSBpdCAoY2xpY2sgdGhlICpQcmV2aWV3KiBidXR0b24gb3IgcHJlc3MgKkNtZCtTaGlmdCtLKiB0byBwcmV2aWV3IHRoZSBIVE1MIGZpbGUpLiANCg0KVGhlIHByZXZpZXcgc2hvd3MgeW91IGEgcmVuZGVyZWQgSFRNTCBjb3B5IG9mIHRoZSBjb250ZW50cyBvZiB0aGUgZWRpdG9yLiBDb25zZXF1ZW50bHksIHVubGlrZSAqS25pdCosICpQcmV2aWV3KiBkb2VzIG5vdCBydW4gYW55IFIgY29kZSBjaHVua3MuIEluc3RlYWQsIHRoZSBvdXRwdXQgb2YgdGhlIGNodW5rIHdoZW4gaXQgd2FzIGxhc3QgcnVuIGluIHRoZSBlZGl0b3IgaXMgZGlzcGxheWVkLg0KDQo=